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In this paper, we consider a class of Liénard systems, described by ẍ + f(x)ẋ + g(x) = 0,
with Z2 symmetry. Particular attention is given to the existence of small-amplitude limit cycles
around fine foci when g(x) is an odd polynomial function and f(x) is an even function. Using
the methods of normal form theory, we found some new and better lower bounds of the maximal
number of small-amplitude limit cycles in these systems. Moreover, a complete classification of
the center conditions is obtained for such systems.

Keywords : Liénard system; Z2-equivariant vector field; normal form; limit cycle.

1. Introduction

Dynamical systems can exhibit self-sustained oscil-
lations, known as limit cycles, which can appear
in almost all areas of science and engineering.
Developing limit cycle theory is not only theoret-
ically important, but also practically significant.
The study of limit cycles was initiated by Poincaré
[1882], and the later development was most moti-
vated by the well-known Hilbert’s 16th problem,
one of the 23 mathematical problems proposed by
Hilbert [1902]. The second part of Hilbert’s 16th
problem considers the maximal number of limit
cycles denoted by H(n), and their relative locations
in planar polynomial systems of degree n. Over
the past century, there have been many works in

this subject. However, whether H(2) = 4 is still
an open question. In other words, the finiteness
problem remains unsolved even for quadratic poly-
nomial systems. For cubic-degree polynomial sys-
tems, there have been many studies on finding the
lower bounds of the Hilbert number H(n). So far,
the best result for cubic systems is H(3) ≥ 13
[Li & Liu, 2010; Li et al., 2009]. This number is
believed to be below the maximal number which
can be obtained for generic cubic systems. Thus,
some simplified versions of Hilbert’s 16th prob-
lem were presented. Among these versions, many
researchers have considered the generalized Liénard
system

ẍ + f(x)ẋ + g(x) = 0. (1)
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Then we rewrite (1) as a differential system in the
plane

ẋ = y, ẏ = −g(x) − yf(x), (2)

where f(x) and g(x) are polynomials of degrees m
and n, respectively. The researchers want to find
the least upper bound, denoted by H(m,n), about
the number of limit cycles of system (2) for all pos-
sible polynomials f and g. Let Ĥ(m,n) denote the
maximum number of small amplitude limit cycles
of system (2), which can be bifurcated from a focus
or center. Then, we have H(m,n) ≥ Ĥ(m,n). We
first introduce some existing results on Ĥ(m,n) for
specific values of m and n. Blows and Lloyd [1984]
proved Ĥ(m, 1) ≥ [m2 ] for any m. Han [1999] gave
Ĥ(m, 2) ≥ [2m+1

3 ] for m ≥ 2. Christopher [1999]
obtained Ĥ(m, 3) ≥ 2[3m+6

8 ] for 2 ≤ m ≤ 50.
For n = 4, Yu and Han [2006] gave Ĥ(m, 4) ≥ m
for 10 ≤ m ≤ 14. Moreover, there are some good
results on H(m,n). For 2 ≤ m ≤ 8, Han et al.
[2009] obtained H(m, 4) ≥ m+3, m = 2, 3, 5, 6, 7, 8,
H(4, 4) ≥ 6. Yang et al. [2010] obtained H(m, 3) ≥
[3m+4

4 ] for 3 ≤ m ≤ 8. Then, Yang and Han [2011]
gave H(m, 4) ≥ m + 4 − [m+1

5 ], 3 ≤ m ≤ 18.
Recently, Han and Romanovski [2013] studied poly-
nomial Liénard systems and obtained H(m, 4) ≥
H(m, 3) ≥ 2[m−1

4 ] + [m−1
2 ], m ≥ 3.

Now, we consider the following Z2-equivariant
Liénard system

ẋ = y, ẏ = −g2n−1(x) − yf2m(x), (3)

where f and g are polynomials of degrees 2m and
2n − 1, respectively, and satisfy

g2n−1(−x) = −g2n−1(x), f2m(−x) = f2m(x).
(4)

Let H(2)(m,n) denote the maximal number of limit
cycles of system (3). We know that H(2)(1, 1) = 1,
H(2)(2, 1) = 2, and H(2)(m, 1) ≥ m, m ≥ 3 in
[Blows & Lloyd, 1984]. From [Luo et al., 1997], we
have H(2)(1, 2) = 3. Yang and Han [2007] obtained
H(2)(3, 2) ≥ 8 and H(2)(2, 2) ≥ 5. Zang et al. [2004]
proved H(2)(2, 3) ≥ 4. Xu and Li [2012] obtained
that H(2)(1, 3) ≥ 3, H(2)(2, 3) ≥ 5, H(2)(3, 3) ≥
10, and H(2)(4, 3) ≥ 10. Recently, Xiong and
Zhong [2013] gave H(2)(1, 3) ≥ 5, H(2)(2, 3) ≥ 6,
H(2)(4, 3) ≥ 12.

Consider bifurcation of limit cycles associated
with a singular point, then we need Lyapunov con-
stants to determine the number and stability of

bifurcating limit cycles. There mainly exist three
methods for computing Lyapunov constants: the
method of normal forms [Han & Yu, 2012; Farr
et al., 1989; Yu, 1998], the method of Poincaré
return map [Andronov, 1973; Liu et al., 2008], and
the Lyapunov function method [Shi, 1984; Gasull &
Torregrosa, 2001]. A comparative study of time-
consuming task between the different methods is
given in [Giné & Santallusia, 2004]. In this paper,
we will compute the normal form to study bifurca-
tion of limit cycles in the following system:

dx

dt
= y,

dy

dt
= δy − (x − x3)(b2x

4 + b1x
2 + b0)

− y(a4x
8 + a3x

6 + a2x
4 + a1x

2 + a0),

(5)

where a0, a1, a2, a3, a4, b0, b1, b2 are real parameters,
and |δ| � 1. System (5) is invariant under the
change x → −x, y → −y, in other words, system (5)
is a Z2-symmetric system. Obviously, the points
(±1, 0) are two singular points of system (5).

The main goal of this paper is to consider the
bifurcation of limit cycles around the two singu-
lar points (±1, 0) in the Liénard system (5). We
will apply the method of normal forms to obtain a
new lower bound on the number of limit cycles for
H(2)(3, 4) and H(2)(4, 4). And a set of center con-
ditions is obtained for such systems. In the next
section, we present some basic formulations and
preliminary results which are needed in proving our
main results in Secs. 3 and 4. We make numeri-
cally simulations to illustrate the centers in Sec. 5.
Conclusion is drawn in Sec. 6.

2. Preliminary Results

In this section, some preliminary results are pre-
sented, and will be used in the following sections.
We can find the general normal form theory in
[Guckenheimer & Holmes, 1983; Chow et al., 1994].
Computations using computer algebra systems can
be found in [Han & Yu, 2012; Tian & Yu, 2013].
Recently, an explicit recursive formula has been
developed for computing the normal form together
with center manifold for general n-dimensional dif-
ferential systems. For brevity, we omit the detailed
formulas, algorithms and the Maple program here,
which can be found in [Tian & Yu, 2013].

Now, we discuss how to determine the maxi-
mal number of limit cycles bifurcating from a Hopf

1850069-2

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

8.
28

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
E

IJ
IN

G
 N

O
R

M
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
02

/0
6/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 11, 2018 9:37 WSPC/S0218-1274 1850069

Hopf Bifurcation of Z2-Equivariant Generalized Liénard Systems

critical point. We first suppose that the normal form
has been obtained in polar coordinates (interested
readers can find the details of normal form compu-
tation in [Yu, 1998]), given by

ṙ = r(v0 + v1r
2 + v2r

4 + · · · + vkr
2k),

θ̇ = ωc + t1r
2 + t2r

4 + · · · + tkr
2k,

(6)

where r and θ denote the amplitude and phase
of motion, respectively. vk and tk are expressed
in terms of the original system’s coefficients. vk is
called the kth-order focus value of the origin. The
zero-order focus value v0 is obtained from linear
analysis. For finding k small-amplitude limit cycles
of system (6) around the origin, we should find
the conditions based on the original system’s coeffi-
cients such that v0 = v1 = v2 = · · · = vk−1 = 0, but
vk �= 0. Then appropriate small perturbations are
found to prove the existence of k limit cycles. In the
following theorem, we give sufficient conditions for
the existence of small-amplitude limit cycles. (The
proof can be found in [Han & Yu, 2012].)

Lemma 1. Suppose that the focus values depend on
k parameters, expressed as

vj = vj(ε1, ε2, . . . , εk), j = 0, 1, . . . , k, (7)

satisfying

vj(0, . . . , 0) = 0, j = 0, 1, . . . , k − 1,

vk(0, . . . , 0) �= 0 and

det
[
∂(v0, v1, . . . , vk−1)
∂(ε1, ε2, . . . , εk)

(0, . . . , 0)
]
�= 0.

(8)

Then, for any given ε0 > 0, there exist ε1, ε2, . . . , εk

and δ > 0 with |εj | < ε0, j = 1, 2, . . . , k such that
the equation ṙ = 0 has exactly k real positive roots
[i.e. system (6) has exactly k limit cycles] in a δ-ball
with its center at the origin.

Next, we turn to describe the analytic condi-
tions for centers in system (2) obtained by Cherkas
[1972], also seen in [Christopher, 1999]. For sys-
tem (2), assume that the singular point is at the ori-
gin g(0) = 0, and which is nondegenerate g′(0) > 0.
The focal type implies that f(0)2 < 4g′(0). More-
over, we denote F (x) =

∫ x
0 f(x)dx and G(x) =∫ x

0 g(x)dx. By the Liénard transformation y �→
y + F (x), system (2) becomes

ẋ = y − F (x), ẏ = −g(x). (9)

Since 2G(x) = g′(0)x2 + · · · , the invertible analytic
transformation u =

√
2G(x) sgn(x) is introduced,

and its inverse is x = x(u). Then, system (9) is
changed to the form

u̇ =
g(x(u))

u
[y − F (x(u))], ẏ = −g(x(u)). (10)

Because g(x(u))/u =
√

g′(0)+O(u) is analytic and
nonzero in a neighborhood of the origin, we can
multiply the right-hand side of (10) by u/g(x(u)),
which gives

u̇ = y − F (x(u)), ẏ = −u. (11)

The system (11) has the same direction field and
local qualitative behavior as (10) in the neighbor-
hood of the origin. Note that the existence of a cen-
ter cannot be changed by this scaling. We consider
the power series expansion of F (x(u)) =

∑∞
i=1 aiu

i.
It is shown that system (11) has a center at the ori-
gin if and only if a2i+1 = 0 for i ≥ 0, see [Christo-
pher, 1999]. Thus, F (x(u)) = φ(u2) and we can
establish the following results.

Lemma 2 (see [Christopher, 1999]). System (2) has
a center at the origin if and only if F (x) = Φ(G(x)),
for some analytic function Φ, with Φ(0) = 0.

Now we consider the function z(x) defined in
a neighborhood of the origin by z(x) = x(−u(x)).
Then we give the following lemma.

Lemma 3 (see [Christopher, 1999]). System (2) has
a center at the origin if and only if there exists a
function z(x) satisfying F (x) = F (z), G(x) = G(z)
with z(0) = 0 and z′(0) < 0.

The solution z(x) must correspond to a com-
mon factor between F (x) − F (z) and G(x) − G(z)
other than x−z. Hence we have the following corol-
lary for the polynomial Liénard system.

Corollary 2.1 (see [Christopher, 1999]). If sys-
tem (2) with f and g polynomials has a center at
the origin, then it is necessary that the resultant
of F (x)−F (z)

x−z and G(x)−G(z)
x−z with respect to x or z

vanishes. This condition is sufficient if the common
factor of the two polynomials vanishes at x = z = 0.

3. Hopf Bifurcation for
System (5)|a4=0

In this section, we study system (5) with a4 = 0. To
make system (5)|a4=0 have Hopf singular points at
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(1, 0) and (−1, 0), we need to set a0 = −a1−a2−a3

and b0 = −b1 − b2 − 1
2 , resulting in the following

system:

dx

dt
= y,

dy

dt
= δy − (x − x3)

(
b2x

4 + b1x
2 − b1 − b2 − 1

2

)

− y(a3x
6 + a2x

4 + a1x
2 − a1 − a2 − a3).

(12)

Due to the symmetry of system (12), the focus val-
ues associated with the singular points (1, 0) and
(−1, 0) are the same, hence we only need to consider
the Hopf bifurcation at the singular point (1, 0). In
order to study the limit cycles bifurcation around
the Hopf critical point (1, 0), we need to compute its
focus values. To achieve this, we use the following
transformation:

x = x1 + 1, y = y1,

to transform system (12) to the following form:

dx1

dt
= y1,

dy1

dt
= δy1 − x1 + b2x

7
1 + 7b2x

6
1 − a3y1x

6
1

+ (20b2 + b1)x5
1 − 6a3y1x

5
1 + (30b2 + 5b1)x4

1

− (15a3 + a2)y1x
4
1 +

(
24b2 + 8b1 − 1

2

)
x3

1

− (20a3 + 4a2)y1x
3
1 +

(
8b2 + 4b1 − 3

2

)
x2

1

− (15a3 + 6a2 + a1)y1x
2
1

− (6a3 + 4a2 + 2a1)y1x1.

(13)

Clearly, the singular point (1, 0) of the system (12)
corresponds to the origin of (13), which is a Hopf-
type critical point. We apply the method of normal
forms and the Maple program in [Tian & Yu, 2013]
to system (13) to obtain the focus values.

Theorem 1. For system (13), the first five focus
values at the origin are given by

v0 =
1
2
δ,

v1 = −a1b1 − 2a1b2 − 2a2b1 − 4a2b2

− 3a3b1 − 6a3b2 +
1
4
a1 − 3

4
a3.

(I) When b1 �= −2b2 + 1
4 ,

v2 =
1

12(4b1 + 8b2 − 1)
(80a2b

2
1 + 480a2b1b2

+ 640a2b
2
2 + 80a3b

2
1 + 800a3b1b2

+ 1280a3b
2
2 − 8a2b1 − 16a2b2 + 40a3b1

+ 80a3b2 − 3a2 − 15a3).

(I.a) If 80b2
1 + 480b1b2 + 640b2

2 − 8b1 − 16b2 − 3 �= 0,
then

v3 = − 5a3F1

48(80b2
1 + 480b1b2 + 640b2

2 − 8b1 − 16b2 − 3)
,

v4 = − a3F2

1728(80b2
1 + 480b1b2 + 640b2

2 − 8b1 − 16b2 − 3)3
,

v5 = − a3F3

995328(80b2
1 + 480b1b2 + 640b2

2 − 8b1 − 16b2 − 3)5
.

(I.b) If 80b2
1 + 480b1b2 + 640b2

2 − 8b1 − 16b2 − 3 = 0, then

v2 =
a3(80b1b2 + 160b2

2 + 12b1 + 24b2 − 3)
3(4b1 + 8b2 − 1)

,

further, we have

(I.b.1) if a3 = 0,

v3 = − 28a2(−1 + 20b2)
625(4b1 + 8b2 − 1)3

(4000b1b
3
2 + 8000b4

2 + 1400b1b
2
2 + 2800b3

2 + 280b1b2 + 485b2
2 + 32b1 + 34b2 − 8),

1850069-4
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(I.b.1.1) if a2 = 0, v4 = v5 = 0,

(I.b.1.2) if a2 �= 0,

v4 = −774144b4
2(13520000b

4
2 + 2011000b3

2 + 289550b2
2 − 37485b2 − 1773)

5(5b2 + 1)(100b2
2 + 15b2 + 4)

�= 0,

(I.b.2) if a3 �= 0,

v3 = − 7
200

a2 − 9
40

a3, v4 =
9

100
a3 �= 0.

(II) When b1 = −2b2 + 1
4 ,

v1 = −3
2
a3 − 1

2
a2, v2 = 5a3b2 − 5

3
a1b2 − 1

3
a3.

(II.a) When b2 = 0,

v2 = −1
3
a3, v3 = v4 = v5 = 0.

(II.b) When b2 �= 0,

v3 = − 1
12

a3(42b2 − 5), v4 =
25
126

a3, v5 = 0.

In the above expression of vk, we have used v1 = · · · = vk−1 = 0, for k = 2, 3, 4, 5. Here,

F1 = 1792b4
1 + 7168b3

1b2 − 28672b1b
3
2 − 28672b4

2 − 1792b3
1 − 5376b2

1b2 + 5376b1b
2
2

+ 17920b3
2 − 96b2

1 − 1920b1b2 − 3456b2
2 + 144b1 + 288b2 − 9,

F2 =
226170372096

49
b3
1 −

38690390016
343

b2
1 −

121818193920
343

b1 − 104806047744
343

b2

+
4044350767104

49
b4
2 + 100902371328000b8

2 − 28138851532800b7
2 −

2884805591040
7

b6
2

− 1574178914304b5
2 +

1666892058624
49

b3
2 −

730006401024
343

b2
2 +

8135313408
343

− 862403936256
343

b1b2 +
197976047616

7
b1b

2
2 +

811348918272
49

b2
1b2 +

16934215974912
49

b1b
3
2

+
16273599528960

49
b2
1b

2
2 +

4310115287040
49

b3
1b2 +

10693973901312
7

b1b
4
2 +

16974222852096
7

b2
1b

3
2

+
4436211400704

7
b3
1b

2
2 +

71600339681280
7

b1b
5
2 +

69253276631040
7

b2
1b

4
2 +

16365952696320
7

b3
1b

3
2

+ 1749653913600b1b6
2 + 18042244300800b2

1b
5
2 + 5066352230400b3

1b
4
2

+ 151353556992000b1b7
2 + 75676778496000b2

1b
6
2 + 12612796416000b3

1b
5
2

and F3 is a polynomial of a3, b1 and b2, which is given in the website: http://math.haust.edu.cn/teacher/
wuyusen.
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3.1. H(2)(3, 4) ≥ 10

Theorem 2. System (12) can have ten limit cycles
with five each around the singular points (1, 0) and
(−1, 0). In other words, H(2)(3, 4) ≥ 10, that is
H(6, 7) ≥ 10.

Proof. First, note v0 = 1
2δ. We set δ = 0 to let

v0 = 0. To obtain the maximal number of small-
amplitude limit cycles bifurcating from the origin
in system (13), we first assume that

(4b1 + 8b2 − 1)(80b2
1 + 480b1b2 + 640b2

2

− 8b1 − 16b2 − 3) �= 0.

Then, by linearly solving V1 = 0 for a1, we have

a1 = −8a2b1 + 16a2b2 + 12a3b1 + 24a3b2 + 3a3

4b1 + 8b2 − 1
.

Further, setting v2 = 0 yields that

a2 =−5a3(16b2
1 + 160b1b2 + 256b2

2 +8b1 +16b2 − 3)
80b2

1 + 480b1b2 + 640b2
2 − 8b1 − 16b2 − 3

.

To find the solutions of F1 = F2 = 0, we use the
Maple built-in command resultant, yielding

F12 = −9336150437951988871143570309906432b8
2

× (10b2 − 1)3(20b2 − 1)4(6544857088b7
2

− 4972391424b6
2 + 1654290176b5

2

− 282632448b4
2 + 22600568b3

2 − 150356b2
2

− 82918b2 + 2057).

Now, by solving F12 = 0, we can obtain six solu-
tions for b2, which in turn yield corresponding six
solutions for b1. However, by checking v3 = v4 = 0,
we found that only three sets of them satisfy the
original functions. We take one set of the solutions:

b2 = 0.1627838586 · · · , b1 = −0.4330526646· · · .

In addition, we choose a3 = 1. Then, the other two
parameters are equal to

a2 = −6.6677865869 · · · , a1 = 5.2055857234· · · .

The above critical values can be used to define a
critical point, called pc, for which the focus values

become

v1 = v2 = v3 = v4 = 0, v5 = −0.5681085382· · · .
Moreover, a direct calculation shows that the Jaco-
bian evaluated at the critical point pc is given by

det
[
∂(v1, v2, v3, v4)
∂(a1, a2, b1, b2)

]
= −3.2675348817 · · · �= 0,

implying, by Theorem 2.1, that system (13) can
indeed have five small-amplitude limit cycles bifur-
cating from the center-type singular point (the
origin). Thus, system (12) can have ten limit cycles.

The proof of Theorem 3.2 is complete. �

3.2. Center conditions in
system (12)

In this section, we derive the center condition of
system (13), under which both the critical points
(1, 0) and (−1, 0) of system (12) are centers. Note
that the similar problem has been studied in [Giné,
2017], which gives some center conditions for sys-
tems of the form (2) with f and g of degree ≤ 6.

Theorem 3. System (13) has a center at the ori-
gin [i.e. the critical points (1, 0) and (−1, 0) of sys-
tem (12) are centers] if and only if δ = 0 and one
of the following conditions holds:

(a): a1 = a2 = a3 = 0,

(b): a2 = a3 = 0, b2 = 0, b1 =
1
4
.

Proof. For the case (a), system (13)|δ=0 becomes
dx1

dt
= y1,

dy1

dt
= −x1 + b2x

7
1 + 7b2x

6
1 + (b1 + 20b2)x5

1

+ (5b1 + 30b2)x4
1 +

(
8b1 + 24b2 − 1

2

)
x3

1

+
(

4b1 + 8b2 − 3
2

)
x2

1,

(14)

which is a Hamiltonian system with the Hamilto-
nian function

H(x1, y1) =
1
2
y2

1 −
1
24

x2
1(x1 + 2)2

× (3b2x
4
1 + 12b2x

3
1 + 4b1x

2
1

+ 20b2x
2
1 + 8b1x1 + 16b2x1 − 3).
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The first integral is well-defined in a neighborhood
of the origin, thus system (14) has a center at the
origin.

For case (b), system (13)|δ=0 takes the form

dx1

dt
= y1,

dy1

dt
= −x1 +

1
4
x5

1 +
5
4
x4

1 +
3
2
x3

1

− 1
2
x2

1 − a1y1x
2
1 − 2a1y1x1.

(15)

For system (15), the primitives of g(x1) and f(x1)
are

G(x1) =
1
2
x2

1 −
1
24

x6
1 −

1
4
x5

1 −
3
8
x4

1 +
1
6
x3

1,

F (x1) =
1
3
a1x

3
1 + a1x

2
1.

Moreover, we have

G(x1) − G(z)
x1 − z

= − 1
24

(z + 2 + x1)

× (x2
1 − x1z + z2 + x1 + z − 2)

× (x2
1 + x1z + z2 + 3x1 + 3z)

and

F (x1) − F (z)
x1 − z

=
1
3
a1(x2

1 + x1z + z2 + 3x1 + 3z).

The resultant of both expressions with respect to
x1 or z is zero because both expressions have the
common factor x2

1 +x1z + z2 +3x1 +3z that vanish
at x1 = z = 0. Hence, by Corollary 2.1, the origin
of system (15) is a center. Thus, the critical points
(1, 0) and (−1, 0) of the system (12)|δ=0 are centers
under the condition (a) or (b).

This completes the proof. �

4. Hopf Bifurcation for System (5)

Since we have studied system (5) with a4 = 0,
we will assume that a4 �= 0 in system (5) in this
section. Then, we can use parameter scaling and
state variable scaling in (5) so that a4 = 1. To
make system (5) have Hopf singular points at (1, 0)
and (−1, 0), we set a0 = −a1 − a2 − a3 − 1 and
b0 = −b1 − b2 − 1

2 , yielding the following system,

dx

dt
= y,

dy

dt
= δy − (x − x3)

(
b2x

4 + b1x
2 − b1 − b2 − 1

2

)

− y(x8 + a3x
6 + a2x

4 + a1x
2

− a1 − a2 − a3 − 1).
(16)

Due to the symmetry of system (16), the focus val-
ues associated with the singular points (1, 0) and
(−1, 0) are the same, hence we only need to consider
the Hopf bifurcation at the singular point (1, 0). In
order to study the limit cycles bifurcation around
the Hopf critical point (1, 0), we need to compute its
focus values. To achieve this, we use the following
transformation,

x = x1 + 1, y = y1,

to transform system (16) to the following form,

dx1

dt
= y1,

dy1

dt
= δy1 − x1 + b2x

7
1 + 7b2x

6
1

+ (20b2 + b1)x5
1 + (5b1 + 30b2)x4

1

−x8
1y1 − 8x7

1y1 − (a2 + 70 + 15a3)y1x
4
1

− (4a2 + 56 + 20a3)y1x
3
1 − (a3 + 28)y1x

6
1

− (56 + 6a3)y1x
5
1 − (15a3 + 6a2

+ a1 + 28)x2
1y1 − (4a2 + 6a3 + 2a1 + 8)x1y1

+
(
8b1 + 24b2 − 1

2

)
x3

1 +
(
4b1 + 8b2 − 3

2

)
x2

1.

(17)

Obviously, the singular point (1, 0) of the sys-
tem (16) corresponds to the origin of (17), which
is a Hopf-type critical point. Then the method of
normal forms and the Maple program in [Tian &
Yu, 2013] are used for system (17) to obtain the
focus values.

Theorem 4. For system (17), the first five focus
values at the origin are given by

v0 =
1
2
δ,

v1 = −a1b1 − 2a1b2 − 2a2b1 − 4a2b2
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− 3a3b1 − 6a3b2 − 4b1 − 8b2

+
1
4
a1 − 3

4
a3 − 2,

(I) When b1 �= −2b2 + 1
4 ,

v2 =
1

12(4b1 + 8b2 − 1)
(80a2b

2
1 + 480a2b1b2

+ 640a2b
2
2 + 80a3b

2
1 + 800a3b1b2

+ 1280a3b
2
2 − 160b2

1 + 320b1b2 + 1280b2
2

− 8a2b1 − 16a2b2 + 40a3b1 + 80a3b2

+ 160b1 + 320b2 − 3a2 − 15a3 − 30),

(I.a) if 80b2
1 + 480b1b2 + 640b2

2 − 8b1 − 16b2 − 3 �= 0,
then

v3 = − 5
48(80b2

1 + 480b1b2 + 640b2
2 − 8b1 − 16b2 − 3)

× (1792a3b
4
1 + 7168a3b

3
1b2 − 28672a3b1b

3
2

− 28672a3b
4
2 + 14336b4

1 + 100352b3
1b2

+ 258048b2
1b

2
2 + 286720b1b

3
2 + 114688b4

2

− 1792a3b
3
1 − 5376a3b

2
1b2 + 5376a3b1b

2
2

+ 17920a3b
3
2 − 10752b3

1 − 57344b2
1b2

− 89600b1b
2
2 − 35840b3

2 − 96a3b
2
1 − 1920a3b1b2

− 3456a3b
2
2 − 896b2

1 − 8960b1b2 − 14336b2
2

+ 144a3b1 + 288a3b2 + 672b1

+ 1344b2 − 9a3),

(I.a.1) when D �= 0,

v4 =
7G1

48D
, v5 =

7G2

1728D3
, v6 =

7G3

995328D5
,

(I.a.2) when D = 0,

v3 = − 5
6(80b2

1 + 480b1b2 + 640b2
2 − 8b1 − 16b2 − 3)

(5376b3
1b2 + 32256b2

1b
2
2 + 64512b1b

3
2 + 43008b4

2

+ 448b3
1 − 1792b2

1b2 − 16576b1b
2
2 − 22400b3

2 − 16b2
1 + 800b1b2 + 1664b2

2 − 60b1 − 120b2 + 9),

v4 = − G4

1728(80b2
1 + 480b1b2 + 640b2

2 − 8b1 − 16b2 − 3)3
,

v5 = − G5

995328(80b2
1 + 480b1b2 + 640b2

2 − 8b1 − 16b2 − 3)5
,

(I.b) if 80b2
1 + 480b1b2 + 640b2

2 − 8b1 − 16b2 − 3 = 0, then

v2 =
80a3b1b2 + 160a3b

2
2 + 320b1b2 + 640b2

2 + 12a3b1 + 24a3b2 + 36b1 + 72b2 − 3a3 − 9
3(4b1 + 8b2 − 1)

,

v3 =
G6

1728(4b1 + 8b2 − 1)3
, v4 =

G7

622080(4b1 + 8b2 − 1)5
, v5 =

G8

59719680(4b1 + 8b2 − 1)7
,

(II) When b1 = −2b2 + 1
4 ,

v1 = −1
2
a2 − 3

2
a3 − 3, v2 =

40
3

b2 − 1
3
a3 − 5

3
a1b2 + 5a3b2 − 7

3
,

(II.a) if b2 = 0, then

v2 = −7
3
− 1

3
a3, v3 = v4 = v5 = v6 = 0,

(II.b) if b2 �= 0, then

v3 =
5
12

a3 − 7b2 +
35
12

− 7
2
a3b2, v4 = −7(162b2 − 55)b2

6(−5 + 42b2)
, v5 =

21175
34992

.
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In the above expression of vk, we have used v1 = v2 = v3 = v4 = v5 = 0, for k = 2, 3, 4, 5, 6. Here,

D = 1792b4
1 + 7168b3

1b2 − 28672b1b
3
2 − 28672b4

2 − 1792b3
1 − 5376b2

1b2 + 5376b1b
2
2

+ 17920b3
2 − 96b2

1 − 1920b1b2 − 3456b2
2 + 144b1 + 288b2 − 9,

G1 = 405504b6
1 + 4775936b5

1b2 + 22167552b4
1b

2
2 + 51183616b3

1b
3
2 + 59834368b2

1b
4
2

+ 30277632b1b
5
2 + 2883584b6

2 − 239616b5
1 − 2183168b4

1b2 − 6848512b3
1b

2
2

− 7864320b2
1b

3
2 + 32768b1b

4
2 + 3997696b5

2 − 6912b4
1 − 181248b3

1b2 − 1225728b2
1b

2
2

− 3115008b1b
3
2 − 2666496b4

2 + 29952b3
1 + 253440b2

1b2 + 741888b1b
2
2

+ 709632b3
2 − 6192b2

1 − 38304b1b2 − 51840b2
2 + 216b1 + 432b2 + 27

and G2 is a polynomial of b1, b2, which is given
at the website: http://math.haust.edu.cn/teacher/
wuyusen. Note that Gk are polynomials whose form
are long and complicated for k = 3, 4, 5, 6, 7, 8,
and these polynomials are useless for studying limit
cycles and center conditions in this system, thus
they are omitted here.

4.1. H(2)(4, 4) ≥ 12

Theorem 5. System (16) can have 12 limit cycles
with six each around the singular points (1, 0) and
(−1, 0). In other words, H(2)(4, 4) ≥ 12, that is
H(8, 7) ≥ 12.

Proof. Note that v0 = 1
2δ. We first set δ = 0 to

let v0 = 0. In order to obtain the maximal number
of small-amplitude limit cycles bifurcating from the
origin in system (17), we suppose that

(4b1 + 8b2 − 1)(80b2
1 + 480b1b2 + 640b2

2

− 8b1 − 16b2 − 3)(1792b4
1 + 7168b3

1b2

− 28672b1b
3
2 − 28672b4

2 − 1792b3
1 − 5376b2

1b2

+ 5376b1b
2
2 + 17920b3

2 − 96b2
1 − 1920b1b2

− 3456b2
2 + 144b1 + 288b2 − 9) �= 0.

Then, by linearly solving V1 = 0 for a1, we have

a1 = −8a2b1 + 16a2b2 + 12a3b1 + 24a3b2 + 3a3 + 16b1 + 32b2 + 8
4b1 + 8b2 − 1

.

Setting v2 = 0 yields that

a2 = −5(16a3b
2
1 + 160a3b1b2 + 256a3b

2
2 + 8a3b1 + 16a3b2 − 32b2

1 + 64b1b2 + 256b2
2 − 3a3 + 32b1 + 64b2 − 6)

80b2
1 + 480b1b2 + 640b2

2 − 8b1 − 16b2 − 3

and by solving v3 = 0, we obtain

a3 = −[224(64b4
1 + 448b3

1b2 + 1152b2
1b

2
2 + 1280b1b

3
2 + 512b4

2 − 48b3
1 − 256b2

1b2 − 400b1b
2
2

− 160b3
2 − 4b2

1 − 40b1b2 − 64b2
2 + 3b1 + 6b2)]/(1792b4

1 + 7168b3
1b2 − 28672b1b

3
2 − 28672b4

2

− 1792b3
1 − 5376b2

1b2 + 5376b1b
2
2 + 17920b3

2 − 96b2
1 − 1920b1b2 − 3456b2

2 + 144b1 + 288b2 − 9).

To find the solutions of G1 = G2 = 0, we use the Maple built-in command resultant, yielding

G12 = −5968978586495344043084398598305783777339213041017876141456177\
220496114144797834450112014187717027772947413822608330987667456b20

2

× (62823542447199485952b15
2 − 168141024532484849664b14

2 + 112707169650959450112b13
2

+ 12155968015354036224b12
2 − 53676948841235546112b11

2 + 31491405673981673472b10
2
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− 8929402795899502592b9
2 + 1200391039909289984b8

2 − 16994256389449984b7
2

− 15402767132000512b6
2 + 2206707552197920b5

2 − 277922745399568b4
2 + 33899660227737b3

2

− 2234474742528b2
2 + 61204426400b2 − 569088000)(6544857088b7

2 − 4972391424b6
2

+ 1654290176b5
2 − 282632448b4

2 + 22600568b3
2 − 150356b2

2 − 82918b2 + 2057)2

× (5488b3
2 − 5432b2

2 + 1351b2 − 88)3.

By solving G12 = 0, we can obtain 16 solutions for
b2, which in turn yield corresponding 16 solutions
for b1. However, by checking v4 = v5 = 0, we found
that only nine sets of them satisfy the original func-
tions. We take one set of the solutions:

b2 = −0.7014257217 · · · ,
b1 = 2.2369878897· · ·.

Then, the other three parameters are equal to

a3 = −3.2199816513 · · · ,
a2 = 2.0239319224 · · · ,
a1 = 3.0124500143· · ·.

The above critical values can be used to define a
critical point, called pc, for which the focus values
become

v1 = v2 = v3 = v4 = v5 = 0,

v6 = 59.3476925790· · ·.
Moreover, a direct calculation shows that the Jaco-
bian evaluated at the critical point pc is given by

det
[
∂(v1, v2, v3, v4, v5)
∂(a1, a2, a3, b1, b2)

]
= 4061.6310505035 · · ·

�= 0,

implying, by Theorem 2.1, that system (17) can
indeed have six small-amplitude limit cycles bifur-
cating from the center-type singular point (the ori-
gin). Thus, system (16) can have 12 limit cycles.

The proof of Theorem 4.2 is complete. �

4.2. Center conditions in
system (16)

In this section, we derive the center condition of sys-
tem (17), under which both the critical points (1, 0)
and (−1, 0) of system (16) are centers. Note that
Giné studied the similar problem, and gave some
center conditions for systems of the form (2) with

f and g of degree ≤ 6 in [Giné, 2017]. By analyzing
the focus values that we obtained, we have the fol-
lowing result.

Theorem 6. System (17) has a center at the ori-
gin [i.e. the critical points (1, 0) and (−1, 0) of sys-
tem (16) are centers] if and only if δ = 0 and the
following conditions hold :

b1 =
1
4
, a2 = 15, b2 = 0, a3 = −7.

Proof. Under the conditions we gave, sys-
tem (17)|δ=0 becomes

dx1

dt
= y1,

dy1

dt
= −x1 +

1
4
x5

1 +
5
4
x4

1 − x8
1y1

− 8x7
1y1 + 20y1x

4
1 + 24y1x

3
1

− 21y1x
6
1 − 14y1x

5
1 − (13 + a1)x2

1y1

− (26 + 2a1)x1y1 +
3
2
x3

1 −
1
2
x2

1.

(18)

For system (15), the primitives of g(x1) and f(x1)
are

G(x1) =
1
2
x2

1 −
1
24

x6
1 −

1
4
x5

1 −
3
8
x4

1 +
1
6
x3

1,

F (x1) =
1
9
x9

1 + x8
1 − 4x5

1 − 6x4
1 + 3x7

1 +
7
3
x6

1

+
1
3
(13 + a1)x3

1 + (13 + a1)x2
1.

Moreover, we have

G(x1) − G(z)
x1 − z

= − 1
24

(z + 2 + x1)

× (x2
1 − x1z + z2 + x1 + z − 2)

× (x2
1 + x1z + z2 + 3x1 + 3z)
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and
F (x1) − F (z)

x1 − z
=

1
9
(x2

1 + x1z + z2 + 3x1 + 3z)

× (x6
1 + x3

1z
3 + z6 + 6x5

1

+ 3x3
1z

2 + 3x2
1z

3 + 6z5 + 9x4
1

+ 9x2
1z

2 + 9z4 − 6x3
1 − 6z3

− 18x2
1 − 18z2 + 3a1 + 39).

The resultant of both expressions with respect to
x1 or z is zero because both expressions have the
common factor x2

1 +x1z + z2 +3x1 +3z that vanish
at x1 = z = 0. Hence, by Corollary 2.1, the origin
of system (18) is a center. Thus, the critical points
(1, 0) and (−1, 0) of the system (16)|δ=0 are centers
under the conditions.

This completes the proof. �

5. Conclusion

In this paper, we have given two new lower bounds
of the number of small-amplitude limit cycles
around two critical points, i.e. H(2)(3, 4) ≥ 10
and H(2)(4, 4) ≥ 12. Normal form theory has been
applied to compute the focus values, and then to
determine the number of bifurcating limit cycles
near the critical points. Moreover, based on the nor-
mal forms, two sets of center conditions for the two
critical points have been obtained for such two kinds
of systems, respectively.
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